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1. INTRODUCTION

Let N, N7 and R denote, respectively the set of positive integers, the set of
nonnegative integers, and the set of real numbers; let II" , n E N, denote the
set of algebraic polynomials of degree less than or equal to n; let C[a, b]
denote the set of real continuous functions on [a, b]; let w(f; .) denote the
modulus of continuity of /; let II/!I denote the sup norm of/E C[a, b]; and,
finally, let C1 , Cz ,... , d1 , d2 , ••• , denote absolute positive constants.

In this paper, we are interested in determining how well we can approxi­
mate continuous functions which increase and decrease a finite number of
times on a closed interval by polynomials which share the same monotonicity
properties on this interval.

A function/E C[a, b] is called piecewise monotone if it has a finite number
only of relative maxima and minima on [a, b]. The points a and b together
with the relative maxima and minima of / are called the peaks off Given
that/is a piecewise monotone function on [-I, I] with peaks at the points

we define the degree of comonotone approximation to / by elements of IIn

to be

where IInC 1) is the set of elements of IIn which have the same monotonicity
as/on each of the subintervals (~i' ~i+l)' i == 0, I, ... , k - I.
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If k ,. I, that is, iff is a monotone function on [-- I, I], then Lorentz and
Zeller [3] have shown that

E~(f) cw(f; n 1
), n l. 2, ... :

that is, we can approximate monotnely with the same order of approximation
guaranteed by Jackson's theorem for

En(f)'~ inf {II! - p : pEnn}.

Ideally, we would like to show that

(1)

for any piecewise monotone function f The quantitative results already
known on comonotone approximation are of two kinds-monotonicity is
preserved, but at a loss in degree of approximation, or the Jackson order of
approximation is retained, but comonotonicity is lost around the peaks off
More specifically, regarding exact comonotone approximation (where
monotonicity is preserved even around the peaks), it has been shown by
Passow and L. Raymon [6] that if f is a piecewise monotone function on
[-I, I], then, given any E > 0,

(2)

In this paper we obtain a Jackson-type theorem for comonotone approxi­
mation. In particular, we obtain estimates of the form (1) for comonotone
approximation to piecewise monotone functions of a certain type. This class
of functions will include, in particular, all piecewise linear functions which
are non-constant in each subsegment containing a local extremum.

The DeVore kernel is defined to be Vit), where

where P2n(t) is the Legendre polynomial of degree 2n, IX n is its smallest
positive zero, and Un is a normalizing constant chosen so that

( Vn(t) dt =.~ 1.
, -1

If we vary the DeVore kernel by dividing out additional zeros of P2n(t).
that is, if we define, for each} E N, the D -} kernel Vn,;(t) by

, () [ p2n(t) ] 2
Vn,j t = ['n,; (t2 _ 1X2 ) ... (t2 _ (X2 ) ,

J.n - ),n

(3)
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where P2n(t) is again the Legendre polynomial of degree 2n, (XLn, (X2.n ,... ,
(Xi.n are thej smallest positive zeros of P2n(t), and Vn.i is a normalizing constant
chosen so that

r Vn.i(t) dt = 1,
-1

then we obtain a whole sequence of algebraic kernels with the following
property: If we define the nth D - j polynomial offE C[- to t] to be

1/2

Qn.iCf; x) = f Vn.iCt - x)f(t) dt,
-1/2

(4)

then Qn.i(f; x) E JI4(n-i) for each n ~ j. It is shown in [I, Chap. 6], that if
0<0 < t, then

(5)

where Ca is a constant depending only on j and o.
In proving our main result, we will need to use one of the D - j kernels

for whichj ~ 2. We will, in fact, choose to work with the D - 2 kernel.

2. PRELIMINARIES

Note. We adopt the following convention regarding notation: Suppose
we are given a "distinguished" set of points {ti} (i 0= 1, ... , r) satisfykng

a < t1 < t2 < ... < t r < b.

Then, when we refer to the number d with respect to the set {a, b, ti }, we will
always mean the number t mini {(tl - a), (b - tr), (t'+1 - t i)}, and if
o< E < d, we denote by S, , the collection of intervals

{(a, t1 - E), (tp + E, b), (t i -;- E, ti+1 - E)} (i = 1, ... , r - 1).

Before stating the theorem, we will make the following definitions and
observations:

DEFINITION 1. Let f(x) be a piecewise monotone function on [a, b],
with peaks at

a = go < gl < ... < g"+1 = b,

where p ~ I. We say that f(x) satisfies a convexity condition (around its
peaks) if there exists E > 0 such that in each of the intervals (gi ~ E, gi + E),
i = I, 2, ... ,p,

Ll2f(x) ~ 0 if gi is a local minimum,

Ll2f(x) ~ 0 if gi is a local maximum.
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Note I. The following statements are true for any function f satisfying
the above definition (see [7, pp. 108-109]):

(i) The right- and left-hand derivatives of f exist at each point x E

(~i - E, ~i + E), i I, ... , p (and are equal almost everywhere) and are
denoted by D~f(x) and D-f(x), respectively.

(ii) The functions Dif(x) and D-f(x) are non-decreasing [non-increasing]
in the intervals (~i - E, ~i E) for which ~i is a local minimum [local
maximum], and if x, y E (~i - e, ~I + E) and x <: .1', then D~f(x) D-.f(y)
D+f(y)[Df(x) D-f(y) D f(v)].

DEFINITION 2. Let f be as in Definition I. Then f is properly piecewise
monotone if it satisfies a convexity condition for some E > 0 and if, for each
i = I, ... ,p,

Note 2. The following two observations follow easily from the definition
of "properly piecewise monotone" together with Note I:

(i) Define, for each i = 1,... , p,

M i = max {I D-.l(~i)1 , I D~f(~J!].

Then for each such i, there exists 0 <: E i <: E such that

I F(x) I ~ 2M; a.e. (6)

(ii) Define, for each i I, ... , p,

m, = min {I D-.f(~,)i , I Df(~i)I].

Then for each such i,

I
fix) ~- f.(Y) I

117 i
x-y I

(7)

whenever x and y belong to one of the intervals (~I -- E, ~J or (~i ' ~I E),
X oF y.

We are now ready to state the main result:

THEOREM. Let f(x) be a properly piecewise monotone function on [-I, I].
Then, for n sufficiently large, there exists Pn E JIn satisfying

Pn is comonotone with f on [-I, I].

Ilf - P n ~ c1w(j; n-1
),

where C1 is a constant depending on properties off

(8)

(9)
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In [4], we obtained certain estimates on the D -- I kernel. These proofs may
easily be modified to yield the following estimates for the general D - j
kernel, Vn.i(t), defined by (3), and its derivative.

LEMMA I. Let E > 0 be given, and let I > v > 0 be specified. Then there
exist positive constants d(j) and d'(j), depending only on v and j, such that, for
all n :;? 2(j + I )/E,

(i) if v ;): I x I ~ E, then

and

(ii) if v ~ I x I ~ E, then

I V'(x)n,}

Proof (i) See [4].

(ii) We sketch the proof of (ii) for the D - I kernel. An easy modifica­
tion yields the more general result:

Differentiating Vn.lx) by the quotient rule, and using the estimates on
exLn given in [4], we get, letting z(x) = (x2 - exi,nF, that

I(Z(X))-l I :s;; 2c4 for n ~ 4/E,
and

I z'(x)/z(x) I :s;; 3c2 for n :;? 4/E.

Now, using the estimates on P2n(x), P~n(x), and Vn.1 given in [4] in the formula
for V;"lx), we get (ii).

We will also need the following three lemmas:

LEMMA 2. Let j EN be fixed. Let Vn.it) = Un(t) be the D - j kernel
defined by (3). Let fL E [-t, tJ, and let rn,ix - fL) = rn(x - fL) denote the
nth D ~-.i olynomial of the function I x - fL ! , -~ :s;; x :s;; t. Then

+ tu;.<x + t) - tu~(x - t) -+- fL(U~(x - -n + U~(x + t))·

Proof By definition we may write

1/2

r,,(x - fL) = J Un(t - x)! t - fL I dt.
-1/2
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Keeping in mind that Un(t) is even, then making the substitution u x
in the above integral and splitting up the new integral, we get

,.. ;1'+1/2

r,,(x - fL) J.,.-1/2 U,tCt) X- fL - t cit

,~ r~i<2 UJt)(x - fL - t) dt - (',,12 Un(t)(x - fL - t) dt.

Differentiating this expression twice with respect to x yields our result.
We also get the following expression for the derivative of the nth D - j

polynomial of a function f:

LEMMA 3. IffE C[-L~] and QII,;(f; .:r) = Qn(x) denotes the nth D - j
polynomial off given by (4), then

Q~(x) ~c -fW U,,(x - D -+- f( -~) Un(x -+-n

-+- r:2

2
Un(t - x) df(t). (10)

Proof As shown in [2] for the D - 1 polynomials off, (10) follows by
first integrating Qn(x) by parts, then differentiating with respect to x.

Note 3. Since we will be dealing primarily with the D - 2 kernel, we
will adhere to the following notation: We denote the D - 2 kernel, Vn,lx),
by Un(x) , we let Un be the normalizing constant V n.2 , and, if fL E [-1, H we
denote by rn(x - fL) the nth D - 2 polynomial of the function x - fL '

-t ~ x ~~.

It is well known that the convolution of a kernel with a continuous function
f frequently approximates f "better" in places where f enjoys greater
smoothness. We prove a spacial case of this general statement:

LEMMA 4. Let f be a properly piecewise monotone function on [-~, H
with local extrema at the points {~,} (i = 1, ... , p), where

- ~ < ~l < ~2 < ... < f" < - k,

and p ? 1. Let f satisfy Definition 1 with E > 0, and suppose, without loss of
generality, that E < d, where d is taken with respect to the set {-l, -t, ~;}.

Let M" m, , and E, be defined as in Note 2. Let QnU; x) denote the D - 2
polynomial off Then, for each i c=c I, ... , p, there exists N i such that (f x E

(~i - tEi, ~i -+- tE,) andn ? N i ,
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Proof Let ai = gi - Ei , bi = gi + Ei, i = I, ... , p. Define the function
g(x) on [-t, lJ as follows:

g(x) = f(ai)'

= f(x),

= f(b i ),

ai < x < bi ,

Then g(x) E Lip(l, 2Mi ) by Note 2(i). Let Qn(g; x) denote the D - 2 poly­
nomial of g(x). Then if x E (gi - lEi, gi + lEi),

I f(x) - Qn(f; x)1 = i g(x) - Qn(f; x)1

~ I g(x) - Qn(g; x)1 + I QnCg; x) - Qn(f; x)l, (11)

where, by our introductory remarks (see (5»,

Ig(x) - Qn(g; x)1 ~ II g - QnCg)II[-3/s.1I4]

(12)

and, by Lemma I(i)(withj = 2),

I QnCg; x) - QnU; x)1

~ I(i
/2

+ f/2 [Un(x - t)(g(t) - f(t»] dt I
,

whenever n ::? 12fEi .
For n so large that n ::? 12/E; and

d1 Ilfll n-1(lEi)-1 ~ M i

the result follows from (II )-(13).

3. PROOF OF THE MAIN RESULT

(13)

(14)

Note. A piecewise linear function L(x) defined on an interval [a, b] is a
(continuous) function for which there exist points a = Xo < Xl < ... <
Xk = b, called the nodes of L(x), such that L(x) is linear on each of the
intervals [Xj , Xj+lJ"j = 0, I, ... , k - 1.

If L(x) is a piecewise linear function with nodes at the points X o < Xl <
... < Xk, we define Sj to be the slope of Lon [Xj, Xi+l],j = 0, I, ... , k - I,
and M(L) = maXi ISi I .
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Proof (if the theorem. Without loss of generality we will show that there
exists a sequence of polynomials {P,,} belonging to II41i11 (where p is the
number of local extrema) for 11 sufficiently large, and satisfying (8) and (9)
for 11 sufficiently large. Again. without loss of generality. we will work on the
interval [-~, - }]; unless otherwise indicated, all norms will be taken on this
interval. On those occasions when it is necessary to choose a constant or an
11 which is sufficiently large, for the sake of simplicity, we will not always
make the most economical choices.

Case 1. Suppose that f(x)=~ L(x) is a piecewise linear function satisfying
the hypotheses of the theorem. We note that because it is piecewise linear,
L(x) aytomatically satisfies a convexity condition for some E O. Let the
nodes of L(x) occur at the points

and let

be the local maxima and minima of L, where p I. Take d with respect to
the set {-~, -1. g;} (i == I, ... , p). Without loss of generality, we assume that
E < d. We note that, since each g, == x, for some 2 t ~ k - I, then,
using the notation of Note 2,

M, = max {. S,.] I, i Sf I}; 111, = min {i SI-l i, St iJ.

Let 0 < E, < E, i I, ... , p, be such that (6) is satisfied for L. (Clearly, we
may always take

We extend L(x) comonotonely to [-t, tJ (and we denote the extension by
L(x) also), by defining

and

Defining X o == -~ and Xh·d = t, we may write

7,

L(x) = A + I G, I x - Xj I,
j~O

where A is a constant, and where

.i =- .. I, ... , k.
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Letting Qn(x) denote the D - 2 polynomial of the (extended) function L(x),
then, since

II Qn.2(A; x) - A 11[-3/8.-114] = 0(n-6
) ,

we may assume, without loss of generality, that

Ie

Qn(x) = A + I ajYn(x - Xj).
j~O

We know that

(15)

(16)

Define to = -1.~ and tJJ+l = -lao The remainder of the proof (for Case I)
will go as follows:

We will modify the sequence of polynomials {QnCx)} in such a way as to
obtain a sequence of polynomials {Sn(x)} satisfying

Sn(x) E Il4n - 8 for each n > p + 1.

For 11 sufficiently large,

(17)

for some absolute constant d3 • (18)

There exists d > T > 0 such that for n sufficiently large, Sn(x) is
convex on the intervals (ti - T, ti + T) for which ti is a local
minimum, concave on the intervals (ti - T, ti + T) for which ti
is a local maximum, and comonotone on S7 (see Note at beginning
of Section 3). (19)

Finally, we will perturb the Sn(x) to obtain the desired polynomials.
If we differentiate the expression (15) twice, and use Lemmas I «i) and

(ii)) and 2 (with j = 2), together with the fact that L satisfies a convexity
condition for E > 0, to estimate separately each of the terms ajr~(x - Xj), we
may obtain the following estimates for Q~(x) in each of the intervals (ti - tE,
ti + tE), i = 1'00" p. We employ here the same technique that was used in [4]
to estimate the second derivatives of the DeVore polynomials of a given
piecewise linear function, and, omitting the details, we may assert the
existence of a constant d4 such that for all x belonging to one of these intervals
for some i = 1'00" p, and for all n ;;?: 12/E,

Q~(x) ;;?: -(k + 1) d
4
M(L) n-6 E-8 for ti a local minimum, (20)

and

Q~(x) ~ (k + 1) d4M(L) n-6c 8 for ti a local maximum. (21)
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We now estimate Q;/(x) in the intervals (~i h, ~i+l - h), i 0, 1, ... , p,
where 0 < h < d. Suppose that x E (~i -1 h, ~i+l - h), where, without loss
of generality, we assume thatfis nondecreasing in (~i , ~i+l)' Using Lemma 3,
withf(x) == L(x) andj 2, Qn(x) is given by (10). Now

J1/2 Un(t - x) dL(t)
-1/2

= [t',+ f/2 Un(t - x) dL(t)] + {HI Un(t - x) dL(t)
-L 2 ti-f-l gi

I
,I', SI/2 I

:?c - L
1/2

+ l'i.j1 Un(t - x) dL(t)

for all n :?c 6/h, (22)

where, in the last inequality, we use Lemma lei) together with the fact that
VaL I /2<X<1/2 (L) :'(: M(L). We may assume, without loss of generality,
that L(-i) = 0; hence, [! L [[[-1/2.1/2] :'(: M(L). Then, using Lemma lei), since
--l6 :'(: x :'(: --ltf, it follows that

for each n.
Hence, from (10) and (22)-(23), we have that for n :?c 6/h and x E (~i + h,

~i+l ~ h), i = 0, l, ... ,p,

and

where we may take d7 = ds + d6 •

We assume, without loss of generality, that p is odd and that SI < O. We
define

p

P(x) = TI (x - gi)'
i=l

Then f~I/2 pet) dt IS comanatone with L(x) on [-t, tJ, and, for each
i = l, ... ,p,

r(gi) :?c d p
- 1 if gi is a local minimum (i is odd),

and
r(g;) :'(: -dp - 1 if g; is a local maximum (i is even).
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By continuity, there exists T' > 0 (depending only on p and d) such that

rex) ?c !dp-1 in the intervals (ti - T', tit T'), if i is odd, and

P'(x) ~ _!dP-1 in the intervals (ti - T', ti + T'), if i is even. (26)

Sn(x) = Qn(x) + Yn IX pet) dt,
-1/2

where
(27)

(where we may take ds > 2 max {d4 , d7}). Then, clearly, Sn(x) satisfies (17).
It follows from (20)-(21), (24)-(25) (with h = T), and (26) that Sn(x) satisfies
(19) for all n such that

n ?c max {(k + 1), 6fT}.

Also, we note, using (27), that

(28)

I L(x) - Sn(x) I ~ [L(x) - Qn(x) I + Yn

~ [ L(x) - Qn(x) [ + dsM(L) n-5T-sd- P+\ (29)

whenever n > k and x E [-j, -H By (19), we know that for n satisfying (28),
Six) has exactly one peak in each interval (ti - T, ti + T), i = l, ... ,p. Let
these peaks be {tt,n = tn i = 1,... ,p, where

g: < g: < .,. < g; .
We make the following

Claim. For n sufficiently large,

i == 1,... ,p, (30)

where r = maxi {Mifmi}'

Proof of claim. Suppose that x E (ti - T, ti + T) and that n satisfies

\ [ M(L) T-
Sd- p

+1 ]1/41
n ?c N; > max /(k + 1), 6/T, N i , M

i
.

Then, using (29) together with Lemma 4, we have that

= ei.n = ei'

(31)

(32)
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We suppose, without loss of generality, that ~t < t, and that f is nOI1­
decreasing in (til' ti)' Then, using (7) (with f= L), together with (32), we
have

Sn(gi) -+- ei L(O L(a) /JIMi - a)
Sn(tn ~ei I11Mi - ti>

suet,) ~ei 117;(~i - ~i),

from which (30) follows. Let N' =~ maxi {N;}. We note that for n N',
Sn(x) satisfies (18).

We now perturb the Six) to obtain the desired polynomials. The technique
is the same as the one used in [5, Theorem I].

For n ~ N', we let wn(x) ,~~ IV(X) be the LaGrange Interpolating Poly­
nomial of degree p - I such that

1, ... ,p.

Then we can write
I'

w(x) L: tiHi(x),
i~l

where

i =~ I, ... , p.

Then

"lI'(x) = L: (~, + 7]i) Hi(x)
i=l

where

Thus,

where

Also,
n

w'(x) =1 + L 7]iH;(X),
i=l

(33)
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so that

where

Hence, w'(x) ? 0 for all x E [-t, t] if n satisfies

Let N = max {N', N"}. Define, for n ? N,

Pn(x) = Sn(w(x)).

Then Pn(x) E II41Jn with

P;,(X) = S~(w(x)) w'(x).

Hence,

sgn P~ (x) = sgn S~ (w(x))

47

(34)

for all x E [-t, t] and n ? N. Thus, Pn(x) is comonotone with L(x) on
[-~, -i) for all n ? N.

Finally, taking norms on the interval [-i, -!],

II L - Pn II ~ II L - Sn II + Ii Sn(x) - Sn(w(x))I1·

Now
ISn(x) - SnCw(x)) I ~ w(Sn ; I w(x) - x I)

where

w(S,,; h) = sup I Sn(x) - Sn(Y)i
Ix-YI<;;h

:0( sup [[ Sn(x) - L(x) I + [L(x) - L(y)[ + I L(y) - Sn(y)l]

:0( 2 Ii L - Sn II + M(L) h.

Thus, by (18) and (33), we have, for n ? N,

Ii L - Pn II :0( 3d3M(L) WI + dlOaprM(L) n-I

= dLM(L) n-l,

where the constant dL depends on L.
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Case 2. Suppose that f is an arbitrary function satisfying the hypotheses
of the theorem. Letf(x) have its peaks at the points

where p ? l. We suppose, without loss of generality, that f(-~) = 0. We
let M i , mi, and °< Ei < E have the same meanings they had in Note 2,
where f(x) satisfies Definition 1 with °< E < d, where d is taken with respect
to the set {gi} (i = 0, l, ... ,p -+- l). Let Ln(x) be the piecewise linear function
whose nodes occur at all points

i = 0, l, ... ,p,

and at all points

i = l, ... ,p -+- l,

with the exception of those nonpeaks which have distance less than 1/n from
each other. Let the nodes of Ln(x) be the points {Xj} (j = 0, 1, ... , s - l),
where

-~ = X o < Xl < '" < X I - I

We define LnCxj) = f(xj), j = 0, 1,... , s - 1. Then Ln(x) has the following
properties:

(i) lin ~ Xj+! - Xj ~ 4ln,j = 0, l, ... , s - 2.

(ii) !if - L n II ~ w(j; 41n) ~ 4w(f; n-l ). (35)

(iii) L n is comonotone withfon [-~,-H

(iv) M(Ln) ~ 4nw(f; n-l ). (36)

(v) For n ? 6/E, the slopes of Ln(x) are increasing in the intervals
(gi - tE, gi -i- tE) for which g; is a local minimum, and decreasing in the
intervals (g; - tE, gi -+- tE) for which gi is a local maximum.

(vi) For n ? 6/Ei , i Sj I ~ 2M; for all
Xj E (gi -h , gi -+- tEi)'

(vii) For n ? 6/E, I Sj I ? mi for all
Xj E (g; - tE, ti -+- tE).

(viii) lfil =-0= II L n II for each n.

(ix) s -+- 1 ~ n if n ~ 2p -+- 4.

Now, by Case l, for all n satisfying (34) and satisfying (14) and (31), where
we let tEi' s, M(Ln ), and II L n i! play the roles of Ei ,k, M(L), and lin,
respectively, i = 1,... ,p, and where we take r = mini {r', lEi}, we can find
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P n(X) E IIbn such that P ..(x) is comonotone with L npn such that P..(x) is
comonotone with Ln(x), hence withf(x), on [-1, -!J, and such that

(37)

where dL depends on r = maxi {M;/mi} and on the peaks off Then, using
(35)-(37) together with the fact that

we have that

where df depends onf

Remark. We note that we can derive the estimate

Q.E.D.

E>O

(see (2)), for an arbitrary piecewise monotone function IE C[-1, 1] by
modifying the proof of the theorem slightly. We will briefly sketch the means
by which this can be done:

Step 1. Suppose that E > °is given, and we wish to approximate IE
C[-1, -1] comonotonely by elements of lIn with error of smaller order of
magnitude than O(w(f; n-1+<)). Choose j EN so that j-l < E and let t =

1 - j-l. Approximate I by piecewise linear functions whose nodes are
spaced at least n-t apart and at most 4n-t apart and which include the peaks
off Let

be the nodes of L n and define Ln(xj) = f(xj),j = 0,1,... , k. Then

(i) L n is comonotone withl on [-!, -!J,

(ii) III - L n II ~ 4w(f; n-t),

(iii) M(Ln) ~ 4ntw(f; n-t), and

(iv) L n is convex [concave] in an interval of radius n-t about each local
minimum [maximum] off

Step 2. Extend Ln(x) to [-i, l] in the same way we extended L(x) above.
Let Qn.;(x) be the nth D - j polynomial of Ln(x) for each n ~ j. Using
Lemmas 1-3 (with the j we selected in Step 1), we can construct polynomials
Sn,j(x) E II4 (n_j) in a manner similar to that in which the S,,(x) were con-
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structed above. The Sn.ix) can be shown to satisfy, for II sufficiently large,
the estimate

for some constant dll and the condition (19) where we may take T'~ Fr'.

Step 3. Noting that the Sn.j(x), for n sufficiently large, have exactly one
peak in neighborhoods of radius n- t about each peak off, we perturb the
Snjx) to obtain polynomials P,lx) , comonotone with f on [-~. -1] and
satisfying

if - Pn :1 O(w(f; n-t»

= o(w(f; n-lc<».
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